
!"#$%&'("&()&*+,%*(-.(%&(/
0%&1234

Valerio Mulas Follow

Nov 18 ! 20 min read

TVoodoo: Hacking a Sony Android TV abusing of infrared

!"#$%&'()*+,&-%(."+*/

0-12,3-1'($##4/'55+-12,3-167%85-159*+,&-%:8"+*/

;<-##,&'($##4/'55#<-##,&67%853&*22*&/

Video: https://www.youtube.com/watch?v=qpdVk7Vv-C8

. . .

https://medium.com/@drakkars?source=post_page-----7b6f29518ff3----------------------
https://medium.com/@drakkars?source=post_page-----7b6f29518ff3----------------------
https://medium.com/@drakkars/hacking-an-android-tv-in-2-minutes-7b6f29518ff3?source=post_page-----7b6f29518ff3----------------------
https://linkedin.com/in/valerio-mulas
https://twitter.com/drakkars
https://www.youtube.com/watch?v=qpdVk7Vv-C8

Abstract
The number of IoT devices connected to the Internet is growing

exponentially. In 2015 the number was around 15 billion units

and the forecast for 2025 points to an estimated 75 billion.

Currently — in 2019 — the number of IoT devices is estimated

to be around 23 billion.

(source: https://www.statista.com/statistics/471264/iot-

number-of-connected-devices-worldwide)

A portion of these impressive volumes consists of Android-

based Smart TVs, Android TV Boxes, Amazon Echo, Amazon

Fire and Amazon Key devices.

This paper announces and describes a new attack vector

targeting Android Smart TVs over Infrared communication.

The process of building the attack will show how to simulate a

remote control in order to automate a set of malicious steps to

take over a Smart TV.

The PoC will also describe some atypical lateral movement

scenarios.

. . .

Table of Content

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

https://dl.google.com/android/repository/platform-tools-latest-darwin.zip

Following this primordial need, the study started by exploring

what the Android Smart TV could oeer in terms of functionality

and what instead could be classed as weakness and therefore

lead us to exploitation.

During this initial scouting, 3 important menu options seemed

to be interesting and promising in the Android TV OS settings:

Developer mode

Security

Network

By walking through the settings in the interface, it’s possible to

unlock the Developer mode on the device and enable

Unknown Sources, as it’s possible in any Android device, more

or less.

The Developer mode is a hidden menu with advanced options,

mainly oriented to give the user advanced debug capabilities.

Unknown Sources lets the developer install any apk not

necessarily coming from the Google Play Store. For example,

it’s commonly used during development and testing phases to

make sure the app is working as expected.

The menu steps that enable Developer Mode and Unknown

Sources are set and deined. It means that the procedure could

be scripted down and memorised quite easily. So, at this point

For example, a list of core buttons could be the following:

Home Button

Arrow keys

Enter key

Back

Some digits (e.g. 1, 3, 7)

Volume UP/DOWN Buttons

Here what the app shows when the /,+?:+,*&1-1O mode is

Unfortunately, the interaction through adb shell might cause a

bueer loss, due the fact the adb shell bueers the output.

A valid alternative is adb exec-out that has been successfully

used for this research.

Let’s see what happens when we tap on the smartphone while

connected through ADB:

As shown, getevent prints out the coordinates on the screen

when it detects a tap event.

What is important from this output is the following section,

that focuses only on the tap action,

Here two basic functions to achieve what is stated above:

What is missing now is the actual simulation of the taps on the

touchscreen:

The sendevent() function reads from the replay ile the screen

coordinates and sends them, via input tap, to the device.

Those functions are an embryonic step into automation to

create payloads. From now on it’s possible to map buttons and

test the simulation.

Let’s try to map the taps related to:

Run Smart Controller App

Select the TV Model

Volume UP Button

Volume DOWN Button

The goal is to create a payload of commands — named

volumeupdown — out of those buttons, to eventually increase

and decrease the volume by 2 units.

The irst step is the recording part:

=(>*/$(&,7%&36/$(&,7%&3(9%+"8,"43%<1

X,7%&3-1OY(4&,//(Z;X0[Z(#%(/#%4

\Z

Then it will be converted into DEC coordinates:

=(>*/$(&,7%&36/$(7%19,&#(9%+"8,"43%<1

Z%19,&#-1O(9%+"8,"43%<163"84(-1#%(9%+"8,"43%<16&,4+*]

AII(EWAU(:S(X"1(#$,(*44

IG@(I@U(:S(^,+,7#(#$,(8%1-#%&(8%3,+

GWU(WIV(:S()%+"8,(D_

GUI(UVA(:S()%+"8,(D_

payload’s chain.

. . .

3. Infrared rubber ducky
The previously described process highly resembles what a

Rubber Ducky does when it has been plugged into a USB port of

a device. The main dieerence here is the channel used to carry

the attack: Infrared communication.

What the rubber ducky does:

By plugging the rubber ducky into the USB port of a device, the

rubber ducky behaves as an automated keyboard and executes

keystrokes on the victim machine

What the infrared rubber ducky does:

By pointing an infrared-equipped hardware/smartphone to a

Smart TV, it behaves as a remote control, executing keystrokes

in the TV context.

Plus, the rubber ducky requires a dedicated hardware and

physical access to the target. The infrared rubber ducky attack

(named TVoodoo) just needs proximity and direct visual to the

target and could be performed by any smartphone with

infrared capabilities (or an equivalent device).

The TV has Internet access

CONS:

While downloading, installing and executing the script, the

TV display shows the navigation through the TV’s menu

options. It could alert someone who’s watching

A hypothetical network analyser that monitors the trauc

might get triggered by some suspicious apk that has been

downloaded

Typing a URL is a very long procedure. The attacker has to

move the mouse to reach the bar, then he has to go down

again, selecting each letter that composes the url

Scenario 2: TV NOT connected to Internet

The goal is the same, but unfortunately some further eeort is

necessary to make things happen. The TV now has no Internet

access, but this could be ixed by spawning a Wii Hotspot

nearby and execute the previous set of operations exposed in

Scenario 1:

Enable Hotspot

Enable Developer Mode

Enable Unknown Sources

Connect to the Hotspot

Open browser

Digit URL/apk

Accept Permits and start

Analysis of this scenario

PRO:

Having that TV connect to your own Hotspot may help to

keep a hypothetical IPS sleeping

CONS:

Same as Scenario 1

You make more “noise” interacting with the TV

Scenario 1 and 2 make unwanted noise, but for some Smart

TV’s they might be the only way to install a malware due the

fact that some capabilities aren’t supported by the Android TV,

like ADB over TCP.

But what if we want to keep a lower proile?

While walking through the previous scenarios, we interact a lot

and you should assume that you never know who is watching

or who is sniung the network.

So we might want or need a more sophisticated scenario.

. . .

4. TVoodoo
The name of the technique is quite self-explanatory: when the

Smart TV has been engaged by an automated remote control, it

looks like has been possessed by a demon. Imagine to look at

the TV and see that, out of nowhere, menu and coniguration

changes are happening ‘automagically’.

K%<(#$,(."OO+,/(<%"+3(7*++(#$*#M

Back to the technical side of the story, what is missing in the

previous scenarios is the furtiveness.

To achieve that, it becomes necessary to sneak in using any

background facility, if any.

Fortunately, the time is ripe to mention the last card and play

the inal hand:

ADB over TCP.

Once the Developer Mode has been unlocked, the Smart TV

shows also the capability to start ADB as a daemon, and

therefore to receive network connections through ADB.

The hotspot that has been introduced in Scenario 2, it’s now a

key component of this attack. Let’s see how it goes if we put

things together

Scenario 3: TVoodoo

Enable Hotspot f-1$,&-#,3(?&%8(^7,1*&-%(Gg

Enable Developer Mode f-1$,&-#,3(?&%8(^7,1*&-%(Gg

Enable Unknown Sources f-1$,&-#,3(?&%8(^7,1*&-%(Gg

Connect to the Hotspot f-1$,&-#,3(?&%8(^7,1*&-%(Gg

Enable ADB

Get the IP of the client (TV) as soon as it connects to our

Hotspot

Connect from the computer to the TV using ADB

Accept the RSA Fingerprint

Run adb install -t -g malware.apk

At this point, the TV is totally under the control of the attacker.

=(#-8,(>*/$(#9%%3%%6/$(

hij(0*"17$-1O(K%8,

hij(0*"17$-1O(^,##-1O/

hij(k1*>+-1O(3,9,+%4,&(8%3,

hij(k1*>+-1O(!Cc(%9,&(;Z_

hij(`4,1-1O(>&%</,&(%1(;)

^#*&#-1O'(L1#,1#(m(*7#l*13&%-36-1#,1#6*7#-%16)Lka

3*#l$##4/'55$*9,->,,14<1,367%85666(n

hij(D4+%*3-1O(.*+<*&,o

*44:3,>"O6*42'(E(e+,(4"/$,36(E6V(.c5/(fU@UUVFI(>]#,/(-1

U6UA@/g

hij(L1/#*++-1O(.*+<*&,o

^"77,//

hij(X"11-1O(.*+<*&,o

^#*&#-1O'(L1#,1#(m(784l*13&%-3#964%756.*-1!7#-9-#](n

&,*+(E8UH6UAV/

"/,&(V8E6UWI/

/]/(V8E6GUV/

In under 2 minutes it was possible to install a malware on

the Android TV. The TV has been tricked into lowering down

its defences allowing the attacker to get full access.

Two minutes of unattended TV, and the game is on.

All these operations are automated, including the RSA

ingerprint request that is prompted as soon as the TV receives

a connection from a client over ADB:

https://haveibeenpwned.com/

. . .

5. The malware PoC
The APP installed at the end of the attack, mentioned as

malware just above, it is a PoC that asks for the following

permissions:

Microphone: it can take over the microphone and record

any conversation

Speaker: would not be funny to share the same music

playlist with the owner of the TV?

Location: oh look, a palantir!

It also has:

Network data exTltration: to send communication to

Internet or to the Intranet

Boot Persistence: after all this eeort, certainly we don’t

want to lose our backdoor after a reboot

The purpose of this experiment focuses on what could be the

real impact of installing an APP with similar malware-

capabilities. The APP/Malware might be a common backdoor, a

keylogger, a cryptocurrency miner or something else.

But we went down to another path.

movement increases the possibility for the attacker to persist

within the network for a longer time.

The Smart TV might also be used as a zombie host linked to a

C&C botnet. The malware used as proof-of-concept has been

designed for this purpose: it “zombiies” the Smart TV and

communicates to the master node of the botnet via POST

request sending a set of data.

Based on the data sent to the master node, the attacker could

start to model and organise what is needed to continue a much

deeper attack.

6.3. AWS Transcribe
One of the permissions granted to the malware involves the

microphone: it is possible to listen to any conversation in the

room and send the audio content to the botnet master node.

Here the attacker could listen to the audio looking for a

particular content, such as personal information regarding

people, or business information such as agreements, contracts

and partners.

fZ"&&,1#+]Y(#$,(^%1](c&*9-*(3%,/1p#($*9,(*1(,8>,33,3

8-7&%4$%1,Y(]%"(,-#$,&($*9,(#%("/,(#$,(&,8%#,(7%1#&%+(*/

8-7&%4$%1,(%&(-1/#*++(*(D^c(C,9-7,g

But, thinking of having thousands of infected Smart TV’s, the

manual approach described above does not scale.

AWS oeers a service, named Transcribe, that is capable to

convert audio to text and that might automate and solve the

“scalability” problem.

Transcribe works in this way: the attacker uploads the iles into

a S3 Bucket and then he runs transcribe against the audio ile

targeted, getting back in return the speech-to-text conversion.

At this point, the attacker can easily start to index and classify

the various targets. Having such amount of audio converted

into text, solves the irst part of the scalability approach the

attacker is looking for, but still, he has to go through a huge

amount of words to ind something interesting.

A trigger on Alexa could mean nothing and turn out to be

totally insigniicant, but it could also mean that Amazon Echo is

in the same room as the TV is in.

And certainly, it’s an unconventional way to proceed with a

Lateral Movement relying on AWS products and services.

6.4. Amazon Echo

6.4.1. Buy me {{ item }} plz

Let’s the funnel begin.

Out of 10,000 Infected TVs, the attacker is able to extract a

subgroup of 1,000 TV related to the Alexa word. Out of those

1,000, there might be a further subgroup of TV’s that have an

Amazon Echo nearby. Out of those 1,000 TVs, 100 have

Amazon Echo already set to buy stue from the Internet.

If that is the case, considering that the attacker’s malware has

also the permission to interact with the speaker, it might be

possible to inject a simple audio asking Alexa to:

Change the delivery address

Buy expensive items

physical access to a building.

6.4.3. Location, location, location

Geolocation on these kind of devices might be tricky and

unreliable, hence their lack of:

GPS

SIM Card

The attacker wants to know what is the location of that goose

that lays the golden egg of an Android TV, that teams up with

Alexa and Amazon keys.

And here, Alexa comes to the rescue. Amazon Echo by default is

on “*-1p#(1%(/1-#7$”, it doesn’t lookup for personal information,

so doesn’t reveal private data, but it can be tricked somehow to

leak its position. Let’s see how an attacker can play audio

through the TV to waterboard Alexa:

8.1. TVoodoo App
We have started cloning a remote control into a smartphone.

Then, we have moved — from the laptop to the PC — the

“orchestration” of the attack, irst by recording the taps and

converting the into coordinates, then replaying these

coordinates through the smartphone.

At this point, it’s possible to create an Android APP that is

capable to ire the attack autonomously.

8.2. Payload Store
Making converge the attack to use a single app, it also opens to

the possibility to create a community website that collects the

payloads for various TV brands. As noticed since now, the

payload varies in function of this tuple:

Vendor | Model | Version number

For example, dieerent versions of Sony Bravia have a slight

variation of the Menu items.

8.3. Drone
Another scenario that requires an additional eeort involves

Raspberry and Drones. The idea is to build a drone with a

Raspberry with the following modules/dongles:

Wireless dongle (To spawn the hotspot)

IRDA dongle (To communicate with the TV)

https://medium.com/policy/f03bf92035c9

Oct 11th: ping for updates

Oct 24th: Update from Sony: still investigating

Nov 5th: Won’t Tx

Thanks to:
Salvatore La Fiura: Apk support, valuable partner to evaluate

the android PoC

Raeaele Mazzitelli: Process security reviewer, important

contributor

Hussein Faraj: AWS Transcribe PoC

Marielle Wijnands: Document Editor

Gerardo Di Giacomo: always there

Gaetan van Diemen (Threat Fabric): they might have a

mitigation/solution for this attack

Android Hacking Infrared Smart Tv Google

https://medium.com/tag/android
https://medium.com/tag/hacking
https://medium.com/tag/infrared
https://medium.com/tag/smart-tv
https://medium.com/tag/google

Discover Medium

Welcome to a place where
words matter. On Medium,
smart voices and original
ideas take center stage -
with no ads in sight. Watch

Make Medium
yours
Follow all the topics you
care about, and we’ll
deliver the best stories for
you to your homepage and
inbox. Explore

Become a member

Get unlimited access to the
best stories on Medium —
and support writers while
you’re at it. Just $5/month.
Upgrade

About Help Legal

https://medium.com/about?autoplay=1&source=post_page-----7b6f29518ff3----------------------
https://medium.com/about?autoplay=1&source=post_page-----7b6f29518ff3----------------------
https://medium.com/topics?source=post_page-----7b6f29518ff3----------------------
https://medium.com/topics?source=post_page-----7b6f29518ff3----------------------
https://medium.com/membership?source=post_page-----7b6f29518ff3----------------------
https://medium.com/membership?source=post_page-----7b6f29518ff3----------------------
https://medium.com/?source=post_page-----7b6f29518ff3----------------------
https://medium.com/about?autoplay=1&source=post_page-----7b6f29518ff3----------------------
https://help.medium.com/?source=post_page-----7b6f29518ff3----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----7b6f29518ff3----------------------

